What is the smallest physically acceptable scale for 1D turbulence schemes?

نویسندگان

  • Rachel Honnert
  • Valéry Masson
چکیده

*Correspondence: Rachel Honnert, Centre National de Recherches Météorologiques, Groupe d’Etudes de l’Atmophère Météorologique, Météo France/CNRS, GMAP 42, avenue Gaspard Coriolis, 31100 Toulouse, France e-mail: [email protected] In numerical weather prediction (NWP) models, at mesoscale, the sub-grid convective boundary-layer turbulence is dominated by the uni-dimensional (1D) vertical thermal production. In Large-Eddy Simulations (LES), the thermal plumes are resolved and the residual sub-grid turbulent motions are homogeneous and isotropic, thus three-dimensional (3D), resulting from the dynamical production. This article sets the critical horizontal resolution for which the usually 1D turbulence schemes of NWP models must be replaced by 3D turbulence schemes. LES from five dry and cumulus-topped free convective boundary layers and one forced convective boundary layer are performed. From these LES data, the thermal production and vertical and horizontal dynamical productions are calculated at several resolutions from LES to mesoscale. It appears that the production terms of both dry and cumulus-topped free convective boundary layers have the same behavior. A pattern emerges whenever data are ranked by the resolution scaled by the size of thermal plumes, (h+hc, where h is the boundary-layer height and hc is the depth of the cloud layer). In free convective boundary layers, the critical horizontal resolution for which the horizontal motions must be represented is 0.5(h + hc). However, the critical horizontal resolution in the forced convective boundary layer case is 3(h hc). +

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rain and Clouds in Brown Dwarf Atmospheres: a Coupled Problem from Small to Large

The large scale structure of a brown dwarf atmosphere is determined by an interplay of convection, radiation, dust formation, and gravitational settling, which possibly provides an explanation for the observed variability. The result is an element depletion of the dust forming regions and an element enrichment of the dust evaporating sites. The formation of dust cloud structures in substellar a...

متن کامل

Construction of low dissipative high-order well-balanced filter schemes for non-equilibrium flows

The goal of this paper is to generalize the well-balanced approach for non-equilibrium flow studied by Wang et al. (2009) [29] to a class of low dissipative high-order shock-capturing filter schemes and to explore more advantages of well-balanced schemes in reacting flows. More general 1D and 2D reacting flow models and new examples of shock turbulence interactions are provided to demonstrate t...

متن کامل

Flow Field Characteristics of an Aerospike Nozzle Using Different Turbulence Models

To improve the calculation of the flow properties of an aerospike nozzle, different turbulence models were investigated in this study. The primary shape of the nozzle plug is determined through utilizing an approximate method. The flow field is, then, simulated using the Navier-Stokes equations for compressible flows. The commercial computational fluid dynamics code Fluent is used to simulate t...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

River Flow Simulation Using SWAT Physically Based Model in Barandouzchay of Urmia Lake River Basin

Nowadays, there are too many models in the world for simulation of hydrological processes, such as the SWAT physically based model. The SWAT model is a continuous and physically based hydrologic model that is the smallest unit in this model is Hydrologic Response Unit, and all hydrological processes are simulated in each of these units. This model can simulate runoff, sedimentation, erosion and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014